- 21 - The system Definition and other steps suggested by the Risk Framework described can be expected to result in the benefits customarily derived from a scientifically disciplined systematic approach to a problem area, such as (1) better conceptual grasp of the intrinsic problems; (2) delineation of methods and data gaps, with improved structuring of research activities; and (3) evolution of problem measurement techniques. Brief discussion of this example of a risk-based framework suggests approaches that might be taken to achieve these ends. Risk Identification Phase I The first requirement of the activities described is the identification of the risks involved. Means to develop manageable limitations on the variety of risks to be considered is first required to make any approach feasible. These means must limit the alternatives to be considered in an organized manner which will not overlook risk possibilities of significance, but will allow minor, insignificant risks to be dismissed if they fail to meet the criteria established to distinguish between the two categories. One approach is suggested in the framework described . a. System Definition Definition of the transportation system to be analyzed would take into consideration all the system factors, including: - Human - Equipment - Cargo - Pathway - Environment 9/ Each of these factors in turn would consist of several elements, depending upon the system selected. For example, the pathway for waterborne traffic might be found to consist of a channel, subsurface hazards, navigation aids, warning signals, channel intrusions, etc. Pipeline corridors might consist of the right of way, unstable or reactive subsurface conditions, pipeline markers, corridor intrusions, etc. Railroad pathways might consist of the roadbed, right-of-way, subsurface hazards, track signals, rail crossing signals, grade _____________________ 9/ Environment is frequently considered to be a transport system factor. Its use here is uncertain; it does not become a factor until a spill dissipates to the atmosphere. Population surrounding a pathway might be considered a pathway element or an environmental element, with compelling justification for either choice. This becomes, then, a system definition decision. - 22 crossings, etc. Viewed together in a systems context, the commonality of elements in different modal systems becomes evident and takes on analytical value for exploring comparative risk levels among the modes. The system definition sets the limits on the scope of the problem to be analyzed with regard to dangerous goods transportation. One of the principal practical deficiencies of the current inherent hazard basis is the limitless number of possibilities confronting the analysts. By undertaking the analysis of the risks due to dangerous goods within a specific system, the analyst can limit the size of the problem he is examining to manageable proportions without neglecting any of the key elements in the system. b. Delineation of Undesired Events After the system has been defined in terms of its principal factors and elements, the next step will be the delineation of undesired system failure events, when the dangerous commodity is being transported in the system. Such events are not system failures like power outages, but rather events resulting in losses attributable to dangerous commodities, which might be described in terms of container punctures, cargo mixing, energy transfers, internal container reactions, etc. A group of such undesired events, or perhaps several classes of undesired events would be documented for that system and the cargo or classes of cargoes being transported in the system. This step permits the analyst to achieve three objectives: 1) It defines and provides visibility for the classes of undesired events which the safety regulations will address . 2) It provides a practical screening process for identifying the more important events which should receive initial attention. 3) It generates an inventory of undesired events among the modes which should lead to identification of the commonality of modal problem areas and to clarification of intermodal problems . Probably the most significant value of this step is the visibility it provides for those undesired events which should be analyzed and controlled. Analysis of this inventory of events and the resultant indications of the directions the regulators and the regulated should be moving would tend to unify the regulatory activities among the modes, even without further analysis. - 23 - The performance test criteria 10/ in regulations for the transportation of radioactive materials were formulated by considering a somewhat similar approach 11/, and utilizing experimental, analytical, and experience data. No other explicit application of this approach has been discerned for other dangerous goods in regulations of the modes . Past accident experience can be useful in building this inventory of undesired events. For example, a perceptive analysis of the existing modal and international regulations could isolate many of the undesired events previously addressed in the regulations, which should be incorporated in such an inventory of undesired events. Such an analysis might also suggest inputs for a catalog of known component relationships and failures which could be utilized in the analysis of probable system failures, described later. This shortcut approach might be utilized during the initial development of possible system failures to be analyzed, although it must be recognized that this "working back from the answer" would not serve to expose unexpected but significant system failures or component failure relationships. It is the predictive needs - - the "safe first time" concept underlying this risk identification process - which requires analytical development of the list of undesired events for each system to assure consideration of unexpected events. c. Risk Analysis Each undesired event must then be analyzed in terms of: 1) the probability of its occurrence; and 2) the possible and probable resultant losses to provide a basis for the risk level determination of the occurrence for the movement of the commodity in the system. This constitutes another area of departure from existing approaches, in that it views danger not in terms of the nature of the hazard or the nature and degree of hazard, posed by the commodity, but rather as a risk which is a function of the probability of system failure (pf) and the severity of the losses from the system failure involving dangerous goods (sf). Mathematically, this relationship can be described as: Risk = f(pf, sf) The relationship between this expression and the risk-taking decision approach for businesses, suggested by game theory, is of interest. The principal difference is the substitution of a penalty concept (sf) in the event of a failure, versus the concept of net gain or reward in the event of success in business or a game. ________________________ 10 / 49 CFR 173.398; lATA Restricted Articles Regulations, Annex 1-5. 11/ For a brief discussion of this approach, see Gibson, R. The Safe Transportation of Radioactive Materials, p.95, Pergamon Press, London, 1966. - 24 - Probability aspects might be remarkably similar for both. The purpose of introducing these relationships here is again to illustrate the benefits which might be derived by applying concepts from other risk problem areas to the problem of risk in dangerous goods transportation. 1. Probability of occurrence Development of the probability of the occurrence of the undesired event is required to establish one aspect of the quantified level of risk determination for the transportation of the dangerous goods. If this undesired event is viewed in terms of a system failure, and the system failure analyzed, approaches to the development of the probability of the failure will be facilitated. System failures are dependent upon the presence of hazards in the system, and upon activation of these hazards in a manner which will produce failure of the system. Thus, to determine the probability of the occurrence of a system failure event which will result in loss, both the hazards and likelihood of their activation must be identified. Hazard identification and probability of system failure can be approximated using existing methods such as Fault Tree Analysis used in other safety program areas.12/ These system safety tools have made such analyses possible in. the aerospace industry, with the resultant attainment of levels of system and component safety thought impossible 15 years ago. (These methods may, in time, emerge as one of the major technological benefits of the space programs.) Application of these analytical tools to dangerous goods transportation problems should pose no conceptual difficulty, and will serve other valuable purposes. Definition of the functional relationships of system components during such analyses leads to identification of the combinations of system component failures ("critical path") necessary to precipitate the undesired system failure. This feature merits emphasis. One of the consistent findings in the post-facto investigations of accidents by the Board is that there is no single cause of a transportation accident of any kind. Delineation of events before, during, and after the accident inevitably discloses that prior to the system breakdown, with its resultant losses, there occurred a chain of events in which a series or combination of system component failures or deficiencies led to an irreversible event and certain system failure and losses. These hazards, or component failures and deficiencies, or causal factors, can usually be discovered if sufficient facts about an accident are logically reassembled . ________________________12/ The Boeing Company, Fault Tree for Safety, D6-53604, Nov., 1968 . - 25 - It is the discovery of causal factors before the irreversible event which constitutes the main thrust of the risk identification process under the risk-based concept. The application of such methods could be expected to lead to the identification of gaps in existing knowledge or technology, before accidents rather than afterward. It could also be of value in identifying near-miss as well as accident data reporting requirements, by highlighting the sensitive system components whose malfunctions or failures should be monitored in service. It would thus give valuable direction to research programs, and could lead to more effective cross-modal applications of findings for accident, near-miss, and component failure reports. Finally, application of these methods would provide feedback to the undesired events inventory. Systematic examination of system component failure relationships during the probability analysis should lead to the discovery of unanticipated, undesired events, which are not otherwise discernible before accidents occur. 2. Consequences of Occurrences Concern for safety in dangerous goods transportation also increases in direct proportion to the severity of the losses resulting from an undesired event. Therefore, this factor must be accommodated in the risk identification and evaluation processes . Consideration of the losses from an undesired event must include: - populations at risk - properties at risk - systems at risk These elements of risk involved in dangerous goods incidents have, unquestionably, always been considered implicitly, in varying degrees, during development of existing regulations. Documentation of these considerations is lacking, and therefore a reliable review of the quality of these past efforts is not possible. The content of the regulations, however, suggests that these efforts produced mixed results. The relatively equal regulatory treatment of almost all green label gases in cylinders, for example, suggests that considerations other then the severity of the potential losses were controlling considerations in the development of existing regulations. More recently, the responses by industry to proposals for regulatory changes, as in HMRB Docket HM - 6 - A for example, also support this indication. Development of a framework for analyzing and methods for evaluating the potential losses from undesired events would contribute to appropriate consideration of this facet of risk. - 26 - Research into the risk elements and the classification of loss modes is needed to refine these concepts. For example, the populations-at-risk and the nature of their exposure must be clearly understood before the consequences of an undesired event can be adequately evaluated. Some populations-at-risk, such as bystanders or emergency personnel, face risks after an occurrence which are similar for several modes; these similarities need to be explored more systematically. The parties-in-interest in the regulatory proceedings usually differ from the population-at-risk. Determination of the population-at - risk is required before the role and interests of each can be established for consideration and analysis. Until these needs are clarified, regulatory safety measures will lack focus and cannot consider the proper degree of protection required, by each segment of the population-at-risk. The relatively narrow view of properties-at-risk and systems-at-risk, as evidenced by the scope of coverage for assignment of loss values to dangerous goods accident reports for example, also requires re-examination. Properties, such as structures over transportation pathways, are at risk, as are cargoes moving in the same transport equipment with dangerous goods. Yet consideration of losses is probably different for these two classes of property-at-risk. The consequences of system losses were illustrated at Crescent City when the water supply system was damaged, and the use of the rail line lost for almost 3 days. Methods for considering all three elements at risk during the appraisal of the consequences need to be developed. Appraisal of the consequences of the undesired events, or transportation system failures, is complex. Where past applications of systems safety to other programs dealt with relatively predictable consequences, because of the relatively stable operator, equipment, pathway or locational considerations, the ever-changing nature of these elements during the transport of dangerous goods raises complexities not yet encountered in other safety programs. The variety and range of consequences of an accident involving dangerous goods are dependent upon many variables, such as the nature of the dangerous cargo, the emergency responses to the accident, and the location of the accident, among others. However, by considering the system through which a dangerous goods shipment moves, and examining the nature and degree of the hazards posed by the commodity or commodities in the shipment, the most extreme credible potential losses from failure could be estimated for that system. By examining the accident history of shipments causing this type of loss or losses, a reasonable estimate can also be developed for the probable losses from failure of the system in terms of death, injury, or otherwise for alternative consequences from a specific failure or type of failure. - 27 - The inherent hazard classification concepts of the present regulations should not stifle the approach to the development of classes of losses to be used in this step of analysis. The Coast Guards hazard guide 13/ suggests one alternative set of classes for consideration of the consequences. The framework presented in this study suggests another set which might be desirable. A new classification theory might follow such efforts. At this time, there appears to be no method for predicting the losses from individual undesired events with a high degree of confidence, without specifying rigid system constraints. Therefore, an approach to rating the severity of the losses will have to be developed. Several approaches might produce the desired results. For example, the use of an estimated "average probable losses" factor might be adequate for the intended purposes. Another might be based on cost of making all risk-takers whole again. Determination of losses would probably require an initial judgmental consensus on the values of life or disabling injury to be utilized for the rating process, but this should not be permitted to become a fatal defect in the approach. The analysis of losses from each of the undesired events for the system selected would produce a "failure severity rating" for each event analyzed. Approximation of the relative severity rating of each undesired event is the purpose to which these technical development efforts should be addressed. This rating should consider the range of possible as well as probable losses for each class of consequence, in combination, for each event. Graphic or mathematical correlations of the ranges of effects for each class might be used to relate them to an overall failure severity rating for the event. Determinations of the magnitude of the possible and probable losses for each class of losses must utilize uniform measurements, based on the losses attributable to the dangerous commodity, in the event, and not the entire event during which these losses occur. This is required to permit valid comparisons among different events and systems. Development of methods and measurements for these estimates, which will often involve incremental losses, will require research. Clearly, better yardsticks than fatalities per year or fatalities per ton-mile transported are required for this purpose. Risk Evaluation: Phase II The failure severity ratings, based on losses from undesired events, could be linked to the failure probability ratings based on the same events. ________________________ 13/ Evaluation of the Hazard of Bulk Water Transportation of Industrial Chemicals. A Tentative Guide, Publication 1465, National Academy of Sciences, National Research Council, Washington, D.C. 1966. - 28 - If the methods developed are internally consistent in terms of units, bases of measurement and otherwise, for probability and loss ratings, the resultant ratings should permit development of direct comparisons among the systems considered and the events within these systems. However, these two factors must be combined to describe the overall level of risk created by the addition of dangerous goods movement to the transportation system. a. Level of Risk A method for combining these two ratings, which reflects their weighted individual impact on the level of risk for the events in different modes, or for all the events in a mode will have to be developed. Customary indicators of risk levels such as total fatalities, or fatalities per year or per total tonnage transported, while perhaps indicative of risk levels, appear to be unsuitable because they can not reflect the probability consideration involved. Therefore, new approaches are needed. One feasible approach might be a scaled rating system, similar to the Richter scale for earthquakes, which are natural "undesired events." Others might be developed through appropriate research. The number of undesired events and the effects of multiple probability combinations suggests extensive calculations to arrive at some of these composite ratings. In aerospace safety program areas, the use of the computer has enabled related and highly complex problems to be successfully examined. These techniques should be investigated to ascertain if they can be transferred in substantial degree to the dangerous goods risk level determination processes . b. Risk Level Decisions After identification of comparative transportation risk levels, one of two decisions is made for each specific system. Either the risk level is accepted, or it is not accepted and alternative corrective measures are considered. The decisionmaking criteria need to be better understood. Investigation of the criteria upon which such decisions should be made warrants attention, because of the apparent differences in the levels of risk accepted today for the transportation of dangerous goods in different quantities and in different transportation systems. For example, the level of risk involved in the transportation of radioactive materials would seem to be lower than that created by the transportation of fuels by several orders of magnitude, based solely on the number of fatalities involved in radioactive materials versus fuel transportation accidents. What criteria should apply to any future regulatory changes which affect this relationship? - 29 - Over the extended period of time regulations have been in effect, the regulated shipper and carrier industries have committed substantial resources to the standards and practices required by these regulations. Injustices which could result from abrupt changes in these regulations and established regulatory concepts underlie widespread fear of change. These real concerns require continuing attention. Change must not be stifled if risk level reduction is commensurate with the effort, but neither should changes be made subjectively or solely on an intuitive basis. Any beneficial change creates new expenses or savings; the ability to consider comparative risk levels before and after the change in the regulations should be of value in establishing needed criteria for deciding whether or not the change is warranted. Risk Reduction: Phase III The Risk Reduction phase constitutes the action phase of the framework. During this process, the development, planning, organization, and control of the measures required to reduce the dangerous goods transportation risk levels to acceptable levels would be conceived, tested, and implemented. Detailed consideration of this phase is beyond the scope of this study, but general concepts relating to the risk concept merit comment. The decision to reduce a known risk level may be implemented in several ways. The most direct action is to prohibit movement of dangerous goods through the system. For example, certain dangerous commodities are considered so dangerous now that they may not be moved in any common carrier transportation system (liquid nitroglycerine). Quantity limits are imposed for transportation in critical pathways such as the Hudson River Tunnels into Manhattan. New analytical methods might suggest other diversions from certain transportation systems for classes of commodities creating unacceptable risk levels. The decision to reduce a known risk level may also be implemented by the development of: - improved system components - improved system controls - improved emergency responses Improvement of system components to reduce the predicted component failure rate can be facilitated within the analytical framework described. By isolating the key components which must be made more reliable, this effort can concentrate on the most productive effort to achieve improved system safety. - 30 - The development of system controls, both regulatory and voluntary, includes the development of rules, compliance checks, and enforcement actions. The system controls can focus on reduction of the probability of either component failure or system failure. System design, fabrication, testing, start up, maintenance, and other aspects of the system operation are some of the areas on which system controls development might focus. The system control efforts stress the prefailure and failure phases of the undesired events, and thus are similar to accident prevention measures in the traditional sense. Under the broader risk concepts, the system controls contemplated extend a step beyond the traditional accident prevention concepts, because they would feed back into the probability estimate of system failure and the resultant effects on the overall transportation risk level. This would permit reasonable preaccident evaluation of the validity of the system controls proposed, rather than require a test in the crucible /of accident experience involving the public for this evaluation.14/ Further, by identifying and monitoring key component malfunctions or failures which might have --but didnt -- cause system breakdowns, hazards throughout the system could be addressed on a continuing basis before a catastrophe. A third area of risk reduction, addressed to minimizing the severity of the losses from a system failure, centers on the development of improved emergency responses. The range of these responses is now imprecisely focused and quite broad. The development of these response mechanisms and techniques could be effectively focused by the results from the risk evaluation process. It should be possible to develop alternative emergency plans, depending upon the circumstances surrounding a particular incident, based on predicted loss modes and severity under these circumstances. The risk identification and evaluation phases could delineate the possible or probable problems to which emergency response development should be addressed. By thus organizing the emergency response development effort, problems caused by proliferating private and public response agencies, plans and systems would be substantially reduced. A central repository of the emergency response plans could be facilitated and more readily utilized in emergencies. _______________________ 14 / See page 11 of the Safety Boards report on the Laurel, Mississippi, Railroad Accident. - 31 - IMPLEMENTATION The implementation of the risk - based approach will quickly identify numerous areas where data, methods, and information will have to be developed to permit the broad, successful application of the approach to all dangerous goods transportation. The resources required to implement the suggested approaches successfully have not been determined: this would have to be developed as the methods research progresses. Because other programs have borne the burden of much of the technological development costs, results in this field should be much less costly. Neither the cost nor benefits can now be reliably ascertained; however, the difficulties with present regulations clearly justify the initial efforts. Implementation of the approach through transfer of existing technologies appears to be most promising in the probability aspects of the analytical efforts. The initial inventory of undesired events could be started without delay by researching the existing regulations for all modes. The development of the concepts relating to losses and the system failure severity ratings may be more difficult. Here, too, an inventory of recorded consequences of such undesired events is a possible starting point, with development of appropriate classifications of loss modes and severity rating techniques to be based initially on an analysis of these findings. It is evident that the risk - based conceptual framework will have to be developed and implemented gradually. This suggests that bulk dangerous goods transportation systems, which prima facie pose highest transportation risk levels and involve fewer complexities than systems carrying multiple cargoes, are the logical first candidates for application of the new approach. Pipeline transportation, particularly, might lend itself well to the initial efforts. Leadership for this undertaking could be provided by the Department of Transportation through its Assistant Secretary for Safety and Consumer Affairs. Public support for the undertaking, in the form of special task groups established by interindustry groups, standards organizations, professional organizations and groups representing emergency personnel, for example, would contribute to success of the effort. One further aspect of this implementation effort warrants comment. As the new analytical methods are implemented, their impact is likely to be felt in other areas of freight transportation safety, such as packaging of nonhazardous shipments, vehicular design, pathway limitations, operational controls, etc. Thus their implementation must not be considered solely in the light of improved dangerous goods transportation safety, but in the broader context of improved freight transportation safety . - 32 - CONCLUSIONS Movement of dangerous goods in transportation systems creates certain risks. Approaches upon which present regulations are based have resulted in apparent inequities and serious difficulties under these regulations, as described herein. Performance standards, while helpful, will not resolve these difficulties. Therefore the Board concludes that a new basis is required for these regulations. This new basis must provide for the effective resolution of difficulties with the existing regulations and meet future needs for efficient equitable regulation of all transportation systems and all dangerous commodities . The Board believes that risk - based concepts can provide a responsive logical framework for development of the objectives, approaches, and analytical methods required to overcome the difficulties with existing regulations, and to improve these dangerous goods transportation regulations and safety. A risk - based framework can provide a systematic, uniform basis for the identification and evaluation of risks posed by movement of dangerous goods through modal and intermodal transportation systems. It can accommodate consideration of both the probability and consequences of undesired system failure events. It can aid in identifying potentially catastrophic system failures. It can provide for identification of risk levels on a comparative basis for a commodity in different modal or intermodal systems, or for different commodities in the same system. It can provide a means for equitable comparison of risk levels among modes and among commodities useful for private and public policy decisions about acceptable risk levels, modal selection and investment criteria, system control requirements, emergency responses, and research and development efforts. Probable benefits from improved analyses are likely to occur in other freight transportation safety program areas as the development of the framework and application of analytical methods progress. The costs of the effort to develop and implement the risk - based framework for evaluation and action are not determinable at this time; neither are the costs of inability to evaluate the probable results of regulation, with their resultant economic inefficiencies and dislocations, or waste under the present regulations, but it is believed that they are substantial. The need for a sound basis for determining the degree of waste might, in itself, justify the effort; the other difficulties with the regulations amplify the need. Much of the technology needed to implement the effort, once framed, has been developed in other safety or analytical program areas and should be transferable without serious conceptual difficulty to this safety program area. A number of practitioners are probably available at present from the aerospace industry. Therefore, implementation costs should be modest when compared either to total safety expenditures or to the potential - 33 - safety and economic benefits in both domestic and international trade. The degree of these benefits is not determinable until the framework is established; however, it is clear that the avoidance of losses such as those of the examples could finance a substantial study effort. For these reasons, the Board concludes that adoption of a risk-based framework for guiding future dangerous goods regulatory actions is necessary and desirable, and must replace the present only partially analytical methods which treat problems in isolation and prevent comparative judgments. Such a framework is feasible, and should be developed and implemented without undue delay. - 34 - RECOMMENDATIONS The Safety Board recommends that: 1. The Secretary of the Department of Transportation initiate the development and adoption of a risk - based framework for evaluation and planning of dangerous goods transportation safety regulations or programs in the Department, by a project leading to development of the analytical methods for risk identification and evaluation required for its implementation through a designated organization within the Department. 2. The modal administrators in the Department of Transportation require application of such a framework as it develops and use of risk - based analytical methods in the formulation of the dangerous goods regulatory programs, including special permits, in each mode, for both intra- and intermodal shipments at the earliest possible date. It appears that risk-based methods should be used first on bulk shipments. 3. The Secretary consider the formation of an advisory group or groups bringing together, under the auspices of an organization such as the National Academy of Sciences, representatives of the point of view of all parties - at - risk, including the population along pathways of movement, to assist the Department of Transportation in the development of the risk identification and risk evaluation aspects of the risk-based framework and analytical methods. The use of existing advisory groups should be considered, where they include the point of view of all major segments of the population - at-risk. 4. Technical advisors representing the point of view of a party - at - risk, or other parties (including academic institutions and non - federal public agencies) having a clear and continuing interest in dangerous goods transportation safety, be required to have experience or capabilities in systems safety analysis techniques or be in training in such techniques in order to serve on such advisory groups. 5. Each private organization or agency whose activities require an interest in industry or code standards affecting the safe transportation of dangerous goods begin to develop and employ risk - based concepts and methods to the maximum extent feasible in its projects, to gain experience in the use of techniques, and to assist the Department of Transportation by providing points of experience able to deal with DOT use of risk - based evaluation concepts. - 35 - 6. The Department of Transportation organization managing this project publish, at not over semiannual intervals, reports of the progress in the development of risk-based methods of evaluating regulations and programs, and their application to specific dangerous goods systems . BY THE NATIONAL TRANSPORTATION SAFETY BOARD:
|
January 27, 1971 71992
|